If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+5y-924=0
a = 2; b = 5; c = -924;
Δ = b2-4ac
Δ = 52-4·2·(-924)
Δ = 7417
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{7417}}{2*2}=\frac{-5-\sqrt{7417}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{7417}}{2*2}=\frac{-5+\sqrt{7417}}{4} $
| -n=5+21n=0 | | 6.4(x+-4)=19.5 | | 3z+8=-1 | | 4/3+2/3x=43/18+7/6x+5/6 | | 5m+3=6m-6 | | 2(x+3)-8=20 | | k/4+8=23 | | 230+0.25x=430 | | 8.2(x+-7)=-24.6 | | 2y+5=3y+6 | | -15=6p+15–10p | | 77=3(y-70)—-65 | | 5x×A=180 | | 1/3=9/t | | 1/4(8+x)=12 | | 1/8d-4=-3/8 | | -x+43=248 | | 77=3(y-70)–-65 | | 3(x-60.54)=45.87 | | 2/5(x+-16)=-6 | | 262-u=147 | | 5(7x-4+15=170 | | 3(g+21)-33=51 | | A×x5=180 | | 2y-77=17 | | 106=-w+179 | | m-2/2=3 | | -4=3(b-15)+-16 | | k+5/22=1 | | -y+28=205 | | 2y-77=7 | | 5x=0.25 |